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1. Introduction

We consider mixed finite element approximations for second order elliptic equations, with
Dirichlet boundary conditions, of the form

—div(eagradp) =f inQ
p =g ona (1.1)
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Here2 c R? is a bounded polygonal domain ade is the boundary. The coefficient
matrixa is assumed to be bounded and uniformly positive definit&ohhe main purpose
of this paper is to discuss how to construct preconditioners for the corresponding discrete
linear systems where an embedding of the donsainto an extended, or fictitious, more
regular domairf2, is utilized.

If the boundary value problem (1.1) is discretized by a standard conforming finite element
method a symmetric and positive definite system of the form

Appn = fn

is obtained. Herd; > 0 is a small parameter indicating the mesh size. However, since the
condition number of the coefficient operatdy, increases with decreasing valuesipthe
behaviour of iterative methods depends on the construction of effective preconditigners

In a domain embedding approach we utilize an embedding of the original ddgmain
into an extended domaif, to construct a proper preconditionBj. This is in contrast to
domain decomposition methods where the domain is split into a number of subdomains. In
practical applications the geometry@f will be simpler, or more regular, than the geometry
of Q. Hence, it is reasonable to assume that corresponding preconditioners on the domain
Q., for example, constructed by multilevel methods, are more easily obtained. In certain
applications, it can even be possible to apply a fast solver on the extended domain. For
early papers discussing domain embedding as a tool for solving discrete systems we refer
to Astrakhantsev [4] and Buzbes al. [10]. For some more recent developments, cf. for
example Proskurowski and Vassilevski [27,28].

For problems of the form (1.1), but with the Dirichlet boundary conditions replaced by
natural boundary conditions, application of domain embedding is rather straightforward. In
this case we can apply precondition®;sof the form

By = RyBe h Ep (1.2)

whereB, ;, is a corresponding preconditioner with respect to the doRgaji, is essentially
the extension by zero operator aRglis the operator defined by restricting functionsio
Under proper conditions o8, , the preconditioneB;, will be a uniform preconditioner
for Ay, i.e., the spectral condition number Bf A;, is independent of the mesh parameter
h (cf. for example, Astrakhantsev [4] or Marchuk, Kuznetsov and Matsokin [23]).

For Dirichlet (or essential) boundary conditions the situation is not as straightforward.
One way to remove the essential boundary condition is to use the Lagrange multiplier
method for the Dirichlet problem introduced by B&ka [5]. The resulting saddle point
system can then be preconditioned by a block diagonal operator, where one of the blocks
will correspond to a preconditioner for the Neumann problem. Hence, this part of the oper-
ator can be constructed by domain embedding as indicated above. The second block of the
preconditioner is a boundary operator defined on the interface betwaad, = Q,\ Q.

For a general description and various applications of Lagrange multipliers and domain em-
bedding for the Dirichlet problem we refer to Diehal.[13] and Rossi [30]. An alternative
approach, utilizing an approximate harmonic extension, is suggested by Nepomnyaschikh
[24] and studied in detail in [25,26], while Finogenov and Kuznetsov [14] study a two—stage
method for the Dirichlet problem. The latter approach utilizes inexact but sufficiently accu-
rate solutions of problems on the extended donsainThe problem of inexact solutions on

the extended domain was also treated drders and Widlund [6]. Another version of the
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domain embedding method in the framework of [24], based on recently proposed bounded

extension operators exploitiﬂg%—stable wavelet—like hierarchical decomposition of con-
forming finite element spaces, was presented in Vassilevski [33].

In the present paper we shall consider the discrete systems obtained from the mixed
finite element method for the problem (1.1). This discretization procedure will lead to an
indefinite saddle point system. Also, the Dirichlet boundary conditions are natural boundary
conditions for the mixed weak formulation of the problem (1.1). Therefore, as we shall see
below, domain embedding preconditioners for these systems can be constructed rather
naturally of the form (1.2).

In Section 2 we will give a brief review of the mixed finite element method for elliptic
boundary value problems of the form (1.1), while preconditioning of saddle point problems
is discussed in Section 3. In particular, we will describe the tight connection between pre-
conditioners for the indefinite mixed system and preconditioners for the positive definite
operator derived from the inner product in the spid¢div). Domain embedding precondi-
tioners for this positive definite operator will be discussed in Section 4. A key tool in the
analysis is the construction of an extension operator which is boundi¢@liv). In Section
5 we show how theH(div) preconditioner proposed in Section 4 can be combined with
the auxiliary space technique (cf. Xu [37]), to construct preconditioners for the systems
obtained from the non-conforming Crouzeix—Raviart method by viewing this method as
a non-conforming mixed method. Finally, some numerical experiments are presented in
Section 6.

We adopt, throughout this paper the following notation: functions and spaces in bold
face will denote vector fields and vector valued function spaces, respectively. Similarly,
operators in bold face (such gsad or curl) will have actions in vector-valued function
spaces.

2. Preliminaries

The inner product in.2(2) will be denoted(-, -) and the same notation will be used to
denote the corresponding inner product for vector-valued functions. The Sobolev space of
functions with derivatives of order less than or equaktion £.2(2) will be denotedd” (2),
and the associated norm Ry||,,. FurthermoreH(div; ©2) is the space consisting of square
integrable 2—vectorfields with square integrable divergence. The inner prodditiv;
Q) is given by

AU, v) = (U, v) + (div u, div v) (2.1)
and we let

Il v llav = A(v, v)*/?

For domainsk ¢ R?, different fromg2, we will in general use an extra subscript to denote
norms with respect to the domakh, for example|| - ||o.x and|| - lldiv. x will be the norms
in L2(K) andH(div; K), respectively.

The mixed weak formulation of the problem (1.1) is given by:

Find (u, p) € H(div; ) x L%($2) such that

(@ lu, v+ (p,divv) =G, forall ve Hddiv; Q)

(divu,q) = F(g), forallg e L3(Q) (22)
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Hereu is the auxiliary variablegrad p. The functionals¥” andG are given by

F(q):—/fqu and G(v):/g v-nds,

Q IR

wheres denotes the arc length alodg andn is the exterior unit normal vector dit2.

A key observation for the discussion in this paper is the well known fact that the Dirichlet

boundary conditions are natural boundary conditions in the mixed weak formulation.
The system (2.2) can alternatively be written in operator form as

u G
(3)- (%)
where the coefficient operata#, is given by

a1l —grad
o= < dv 0 ) (2.3)

The operator{ can be seen to be an isomorphism mapgihgiv; Q) x L?(Q) into its L?—
dual H (div; ©)* x L?(2). A corresponding mapping property for the discrete coefficient
operator will be the main tool in deriving the structure of effective preconditioners for the
corresponding discrete systems.

The mixed finite element method is derived from the weak formulation (2.2). Let
{(Vr, Wi)}re(o,1] be pairs of finite element spaces, derived from a family of triangulations
{Th}ne,1), such thav,C H(div; Q) andW),, C L?(2) whereh denotes the characteristic
mesh size. The discrete weak formulation is to fiogd, pn) €V, x Wj, such that

(@ Yup, v)+ (pp,dive) =G(v), forall veV,,

(divuy,q) = F(q), forallg € Wp,. (2.4)

This system can similarly be written in the operator form

()= (%)

where the operata, : V, xW, —V, x W, has the block structure

_ (A Bj
&ﬂh_(Bh 0) (2.5)

Here the operatord;, : V, — V;, andBy, : V;, — W, are defined implicitly by the system
(2.4),i.e.,
(AU, v) = (@ tu,v) forall u,veV,,

and
(B, u,q) =(divu,q) forall ueV;,,qge W,.

FurthermoreBj: W), =V, is theLZ—adjoint ofBy.
The family of space$(V,,, W)} are assumed to satisfy a Bala—Brezzi condition of

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl5, 321345 (1998)



Domain Embedding Preconditioners 325

the form di
sup (g.dv v) > allqllo forallg € Wy, (2.6)
veV, |1V lldiv

wherex > 0 is independent di. In addition, we assume that
div(Vy) C Wy, (2.7)

It is well known that the two conditions (2.6) and (2.7) imply the stability of the mixed
finite element method for second order elliptic problems of the form (1.1). More precisely,
let X, =V x Wy, with norm

(v I, =1l vIiG, + llqll3.

and letX; be equal taX; as a set, but with the corresponding dual norm, i.e.,

2 2 2
[l(v, q)IIX; =1l vlli+lqllo
where
(v,2
[| v|lx = sup —.
zeV, Il 2 ldiv

The conditions (2.6) and (2.7) imply that the operator norms
||&¢h||$(xh,x;) and ”‘ﬂ/:l”ff(XZ*Xh) are bounded uniformly in. (2.8)

This qualitative description of the system (2.4) is the basic information needed in order to
construct the structure of possible preconditioners for the system.

3. Preconditioning mixed systems

Consider the discrete system (2.4) with coefficient operaftpgiven by (2.5). Our aim is
to solve this system by an iterative method. However, sidgearises as a discretization
of the unbounded operator (2.3), a preconditioning of the system is necessary in order to
obtain an effective iteration.

The coefficient operatatl;, of the discrete mixed systemig—symmetric, but indefinite.
For a short review of various iterative methods proposed for saddle point problems we refer
to Section 7 of [3] and references given there. In the numerical experiments, presented in
Section 6, we will use the minimum residual method. For discussions on the minimum
residual method and block diagonal preconditioners for saddle point problems we refer to
[19,20,21,31,32,36] and Chapter 9 [16]. The derivation given below of the desired structure
of the preconditioner for the saddle point operator is closely related to similar discussions
given in [2] and [3], see also [34].

A preconditioner for the system (2.4) is a positive definite operé@pr: X, — X.
The basic properties required for an effective preconditiéBglis that the action of;,
can be efficiently computed and that the spectral condition number of the op@nathy,
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k(B Ay), is bounded uniformly irk. Herex (B, 45) is given by

SuplA|
inf |A|

k(Bpsdy) =

where the supremum and infimum is taken over the spectrug,of;. We observe that
By Ay is symmetric with respect to the innerprod(@;l-, -). Furthermore, this operator
is the coefficient operator of the preconditioned system

uy Gy,
B A =R
! h(Ph) h(Fh>

If the condition numbexk (B, 4},) is bounded, uniformly ik, then an iterative method like
the minimum residual method, or another method with similar properties, will converge
with a rate independent &f. More precisely, the number of iterations needed to achieve a
given factor of reduction of the error in a proper norm is bounded independeritly of

As a consequence of (2.8) the desired bound on the condition nurtiged;, ) will hold
if

1Bllecx:.x, and ||%;71||59<Xh,x;;) are bounded uniformly in.  (3.1)

Hence, we conclude that a uniform preconditidgitgrfor the mixed system 2.4) is a positive
definite operato8, : X, — X; which satisfies the bounds (3.1) and which is easy to
evaluate.

Let Ay:Vy—V,, be defined by (cf. (2.1))

AW, v) = (Apu,v) forallu,veVvy,.

It is straightforward to see thak;,, is L2—symmetric and positive definite. The operafor
should be thought of as an approximation of the opefategrad div in the sense that the
equationA,u;, = f;, approximates problems of the form

u —grad div u = f, 3.2
with the natural boundary condition
dvu=0 onoQ. (3.3)

Note that the operatdr —grad div is not an elliptic operator. In fact, when restricted to
gradient fields this operator acts like a second order elliptic operator, while it coincides with
the identity operator on curl fields.

The significance of the operatdy;, is that the bounds (2.8) state that the operatgpr
has the same mapping properties as the diagonal operator

Ay O
0 1
Furthermore, the simplest choice of an operator which satisfies the condition (3.1) is a block

diagonal operator of the form
(O, 0
5= (% °) a4
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where@®, is a uniform preconditioner faA;,. The operato®,, should therefore be spec-
trally equivalent toA;l, i.e., there are positive constamtsandc, independent ok such
that

c1A (v, V) < A(O@ A v, V) < c2A(V, V). (3.5)

Hence, the construction of a preconditiofigy for the coefficient operatodd, of (2.4) has
been reduced to the construction of a preconditioner for the positive definite opArator

The construction of effective preconditioners for thg has been discussed by Cai,
Goldstein and Pasciak [11], Vassilevski and Wang [35] and Arnold, Falk and Winther [3]
in two space dimensions and by Hiptmair [17] and Hiptmair and Tosseli [18] in three
dimensions. In particular, it is established in [3] thatVif is a Raviart—-Thomas space,
a standard multigrid V-cycle operator, utilizing a proper smoothing operator, will in fact
be a uniform preconditioner fok,,. In the analysis below we will discuss the possibility
of using a preconditioner constructed with respect to an extended domain to construct a
uniform preconditioner for the operatdy;,.

4. Domain embedding

If the geometry of the domaif? is, in some sense, irregular then for computational reasons it

is frequently desirable to embétinto a more regular extended doma&tp. The purpose of

this section is to discuss the use of such an extended domain to construct the preconditioner
0, for Aj,. We emphasize that even if we are approximating a Dirichlet problem of the
form (1.1), the boundary condition given by (3.3) is a natural boundary condition for the
problem (3.2). Therefore, the domain embedding approach is well suited for the operator
Ap.

In the first subsection, Section 4.1, we present the setting of domain embedding and
prove some auxiliary results, the main one being an extension result of normal trace data
into the interior of the neighbouring subdomé&in . Note, that unlike the domain embedding
approach studied, e.g., in Nepomnyaschikh [24], we do not need this extension mapping
explicitly in the algorithm implementing the actions of the preconditioner. In subsection
4.2 we give the construction of the domain embedding preconditioner and study its spectral
equivalence properties.

4.1. An extension result foi (div)—functions

Let Q. be a fixed extended domain, i.€2, C .. The part ofdQ2 which is contained
in the interior of 2, will be denotedl". For simplicity, we assume that is connected.
Furthermore, we leR2, = 2, \ (2 UT). Hence,

Qe=QUIUQ,
cf. Figure 1. The inner products ih%(€2,) and H (div, €.) will be denoted(., -). and

Ac(-, ), respectively.
We will use H}(I") to denote the space

Hy(D) = {ulr : w e HYX9Q), p=00n3Q\T}

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl5, 321-345 (1998)
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Figure 1. The domai®, = QUT U Q.

and Hé/z(r‘) will be the interpolation space half way betwegA(I") and H3(I') (This

space is frequently referred to &%%2(1“), cf. [22].) If K € 92, UT we let(-, -) ¢ denote

1
the inner product of.2(K) and| - Im.x the norminH™ (K ). The dual space 0"{}!02 (I") with
respect to the inner produtt -) of L2(I') is denotedH ~Y/2(I").
As above leh = (n1, n2) denote the outward unit normal é. It is well known (cf.
e.g., [15]) that the trace operator

v— (v-n)|r

is a bounded map frori (div; ) onto H~Y2(I"). More precisely, there exists a positive
constant, only depending o2 andT", such that

lv-n|_y2r <cll vllgy forall ve H(div; Q) (4.2)

We will assume thaV/,, can be embedded into a larger finite element sp¥ge(2.) C

H (div; .). Hence, the spacé,, is obtained by restricting elements\¢f, (L2.) to Q. We
recall that ifv € H (div; 2.) then the normal component efis required to be continuous
over the interfacé” in the sense that

(v-N)ry = (v-n)|r-

i.e., the normal components taken from the outside or the inside arfe the same. The
subspace of functions i, (€2.) with support in the closure g, will be denotedVg p,
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ie.,
Vo= {veV; () :v=00nQ}

We observe that ifveVg then (v - n)|r = 0. The orthogonal complement &f
in V, () with respect to the inner produgt, (-, -) will be denotedvéh. Hence,Véh
consists of all functions i, (2.) which are ‘discrete\—harmonic’ on€2..

We shall throughout this section assume that the sptes<2.)} are Raviart—-Thomas
spaces constructed from a quasi-uniform triangulafién,} of .. Hence, for a non-
negative integer,

Vi (Q0) = {ve H(div; Q) 1ve (P.(T)?+ (x, y)P.(T) forall T € J,,}

Here P, (T) denotes the space of polynomials of degree at mast 7. The associated
spaced¥;, and W, (R2,.) consist of discontinuous piecewise polynomials of degresth
respect to the triangulatioris;, andJ, j, respectively. It is well known that the stability
condition (2.6) holds for the pairs of spadeg¥,, Wj)} (cf. [29]).

Let alsoZ;,(£2.) be the usual space of continuous piecewise polynomials of degree at
mostr + 1, i.e.,

Zn(Qe) = {z € HY(Qe) : 2|7 € Pya(T) forall T € T, )

and letcurl be the differential operator

_ 9
curl = ( o )
x

curl(Z, () TV (Qe)

It is easy to check that

In fact, curl (Z,,(2.)) consists of piecewise polynomials of degree at mastand
curl (Z,(R2.)) is exactly the subspace of divergence free vector field¥jn(£2.) (cf.

[9))

Finally, we letSy, (I') be the trace space given by
Sp(M) ={u:pn=(v-nr for veV,}
Hence,S;, (") is a space of discontinuous piecewise polynomial§ o8imilarly, we let
Sp(0Q24) ={n:u=(v-nNjho, for veV, (Q)}

such thatS;, (I") C S, (3R24). In the analysis below we shall utilize the following extension
result for boundary functions.

Lemma 4.1. There exists a bounded extension operdigr. H=Y2(I") > H~ Y2392,
such that
/ (Eyg)(s)ds =0 forallg € H™Y2(I)
9,
Proof
Let y1 > 0O be the length of andy> > 0 the length ofo2 \ I such that functions on
9, can be identified with (periodic) functions @a-y1, y2). For eachg € H=Y3(I") =
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H~Y2((—y1, 0)) define Ey g as the odd extension gfgiven by

g(s) fors € (—y1,0)

~Ag(~Ly) fors e (0. y2) 4-2)

Eyg = {
It is straightforward to check that tHe?—dual operatok?; is given by
(E50)(5) = $(5) — (= 12)
Y1
fors € (—y1, 0). Furthermore, the operatéi; is easily seen to satisfy
E} € L(L?0Q), LAI) N L(HY9R,), HE(T))
By interpolation we therefore can conclude that
E} € $(HY2(3Q4), Hy'*(T))
and by duality this implies
Ey € $(H YT, HY?%(0%,))

Finally, the mean value property faf; g follows from the fact that£j¢ = 0O for any
constant functiorp. [ |

Let Oy : L2(0924) — S,(0924) be theL?—projection. Since the spac (32;) in
general will contain piecewise constants the oper@gpadmits an estimate of the form

I(I — Qn)dlosa, < ch’llsan, for0<s<1, (4.3)
wherec is independent of. We now have the following discrete analogue of Lemma 4.1

Lemma 4.2. For eachg € S;,(T") there exists an extensi@gne S, (324) such that
/ g(s)ds =0 and |g|-1200,<clgl-12r
Flon

where the constantis independent of and.

Proof

From Lemma 4.1 it seems that the obvious choicegads E3g. However, in general
Eyg ¢ Sp(0Q24) for g € S, (I'). But we observe that the definition @fy implies thatEy g
is a piecewise polynomial with respect to a partitiono®f implicitly defined by (4.2).
Therefore, the functioiy ¢ will satisfy an inverse estimate of the form

|Esgloaa, < ch Y2|Esgl_1200, < ch™Y?gl_1/ar (4.4)

where the final estimate follows from Lemma 4.1
Define insteadg = QjEyg. SincesS,(0©24) consists of discontinuous functions the
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operatorQy, is local and therefore
g =Eyglr =gIr

Furthermore, since the constant functions are elemeig@f2., ), the mean value property
for g is inherited from the mean value property&fg. Finally, if ¢ € H/2(3Q) we have

(8. aq, = (Eag dlaq, +(Eag. (Qn — D9)sa,
< |Esgl-1/2,00. 10117200, + |Eagloaq, (I — On)dlosq.,
<clgl-12rlPl1/2,80.,

where we have used the estimates (4.3) and (4.4) in the final step. Hence, it follows from
the definition of|g|_1/2 5o, that

. (8 D)o,
|gl-1/2,00, = Sup —— =<clgl-1/2r.
$eHY2(3Q,) |¢|1/2,2)$2Jr

Let
Zp(Qy) = {zla, 'z € Zn(Re)}.

Lemma 4.3. (Discrete divergence free extension) lete S, (). There exists av €
curl (Z,(24)) such that

(v-mr=g and || vlldv.e, =l Vo, <clgl-12r

wherec is independent of and /.

Proof
For a giveng € S, (") letg € S, (921) be as in Lemma 4.2 Singehas mean value zero,
there exists a uniqug € H/2(32,) such that

¢, =g, and ¢ds =0
Q.

Here and in what followsg, will denote the tangential derivative @f, where the unit
tangent vectot is defined such thdt= (n2, —n1) onT'. Furthermore,

lpl1/2,00, <clgl-1200, <clgl-12r (4.5)

Also, observe thap corresponds to a trace 02, of a function inZ;, (2,).
Lety be the unique element i, (22,) such thaty = ¢ on 92, and

/gradw-gradzdxzo
Q4

forall z € Z,(224) such that|yo, = 0. Hencey is a ‘discrete harmonic’ function of2
and therefore (cf. e.qg., [7])

NVllLe, <cl¥lyzin, = cldliy2aio, (4.6)
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Define noww = curl . Then

(v-nfr =W)Ir =(@)Ir =g

Furthermore, since
Il vlldv.e, = Il vlloge, <I¥llLe,

the desired estimate follows from (4.5) and (4.6). [ |

Lemma 4.4. There is a constant, independent of, such that
lulldv.e, <clu-n|_azr foral uevg,

Proof

Letu e Véh and letg = (u - n)|r € S,(I"). Sinceu € V&h it follows that this function
minimizes|| v ||giv,o, over all elements iV, (2.) which satisfy the conditioriv - n)
Ir = g. Therefore, itis enough to establish the existencewiaV, (24) =V, (Q)la,
such thafv - n)|r = g and

Il v lldiv,oy < clgl-1/2r 4.7)
However, the existence of such a functionfollows from Lemma 4.3 [ ]

We observe that, together with the trace inequality (4.1), this lemma implies an inequality
of the form
|l vlldv.e, < cll vilav forall ve Vg,

i 2 2 2 ;
Hence, since¢| v ||div’Qe =|lvllig,=1llv ||div,Q+ we obtain
1
Il vlldiv.e, < Bll vllayv forall ve Vg, (4.8)

where the positive constagtis independent ofi. Also, for eachv € V), there exists a
unique extensiow Véh such thatv = von Q. In fact, v|q, is defined by

A(v,2 =0 forall ze Vg

- 4.9
(Ml = (v- 0l (4.9)

Hence, ifv evo{h is defined fromweV,, by (4.9) then (4.8) implies that
| Vlldiv.2. < Bl v ldiv (4.10)

4.2. The domain embedding preconditioner

In this subsection we present the construction of the domain embedding preconditioner for
the operator of main interest,,, and analyse its properties.

Let R,V (R2.) —V}, be the operator defined by restricting element¥ pf(<2,) to
and lete,:V,—Vy, (2.) be the adjoint operator, i.e.,

(Epu, v). = (U, Rpv) forall ueVy,, veVy, ()
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Alternatively, E,u can be characterized as thé—projection intoV;, (2.) of u®, where
u® e L2(Q,) denotes the extension ofby zero outside?,.

The analogue of the operatdy;, with respect to the extended spaég (2.) will be
denotedA, 5, i.e., A, 1V (Re) =V} (S2.) is defined by

(AepU, v), = Ay (u,v) forall u, veV, ()
We now definel,:V,, — Vy, (2,) by
Th=A, ;ErA
The operatoiT;, preserves théf (div)—inner product in the sense that
A(Tpu, v) = A(u,R,v) forall ueVy,, veVy, (2.) (4.12)
This follows since

Ae(Tpu, v) = (A pThu, v), = (ExApU, v),
(Ahu, R, v) =A (u, Ry v).

Furthermore, iu € Vy, it follows from (4.11) and the Cauchy—Schwarz inequality that

Ae(Thu, ThU) = AU, R,THU) < AU, WY2A (R, THU, R, THu) Y2
AU, WY2A(Tpu, Tyut?

IA

or
Ao(Tpu, Tpu) < A(u,u) forall u eV, (4.12)

The following result shows tha\;,ll can be used to construct a uniform preconditioner for
Ap.

Lemma 4.5. The operatorRhA;iEh is spectrally equivalent tﬂ;l in the sense that
B2A(v, v) < A(RyA,ER) Apv, v) < A(v, v) forall ve V.
The constang is from estimate (4.10).

Proof

This result is just a special case of ‘the fictitious space lemma’ given in Nepomnyaschikh
[26]. However, for completeness we outline the proof in the present setting. The right
inequality above follows since

-1
e,h

A(RATED) Apv, v) = AR T v, v) = A(Tro, Tv) < A(v, v)

where we have used (4.11) and (4.12).
The left inequality follows from the identity

A(v,v) = AV, R, V) = A (T v, V),

wherev € V&h is the extension ob» defined by (4.9). Therefore, by (4.10), (4.11) and the
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Cauchy—Schwarz inequality

A, v) < A(Tho. T, 2A. (0, »)Y/?
< BA(Tho. T,0)Y2A (v, v)/?
= BARWA,LED Ayv, 9)Y2A(v, v)V2
This completes the proof. [ |

The lemma above shows thAf,ll can be used to construct a uniform preconditioner for
Ay, However, it is clear that it suffices to use a preconditid®er, instead ofA. ;.

Assume tha®, ,:V;, (2.) =V, () is L2—symmetric and spectrally equivalent to

1

A e

AA GV, V) < (O 40, v) < (A, v, v) forall veV, () (4.13)

where the positive constantsandc, are independent @f. Define an operatd®;,:V;, — V,,

by
0, = Rh®e,h En (4.14)

Observe tha®), is L2—symmetric since
(Opu, v) = (O, ,E U, Epv), = (U, Qpv) forall u, veV,
The following theorem is the main result of this section.

Theorem 4.1. Assume that th&?—symmetric operato®, ,:V, (2.) — V), (2,) satis-
fies (4.13) and le®y,: v}, — Vj, be defined by (4.14). Then the two quadratic forms

A(v,v) and A(O,A,v, v)
are equivalent ofvy,, uniformly inh.

Proof
We observe that for any € V;,

AO, Ay, v) = (O, 1, E4 Ay v, EZ Al v)

Furthermore, by (4.13) this quadratic form is equivalent, uniformly,ito the quadratic
form
(A, 1Ex ALY, Ex A ) = A(RyA, En) Ay, ),

and by Lemma 4.5 this form is equivalentAq v, v). [ |

Hence we have demonstrated that a preconditi@grconstructed from the extended
domaing, as indicated by (4.13) and (4.14), is spectrally equivalem,'{&. Therefore,
it follows from the discussion given in Section 3 above that a preconditi@peior the
mixed system (2.4), derived from the Dirichlet problem (1.1), is naturally constructed by
the domain embedding approach.
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5. The non-conforming Crouzeix—Raviart method

The purpose of this section is to adopt the preconditioning strategy discussed above for
the mixed finite element method to an alternative discretization procedure which is not
directly based on the mixed weak formulation (2.2). More precisely, we shall analyse the
non-conforming Crouzeix—Raviart method (cf. [12] or Chapter 8 [8]). We will show that
this system can be interpreted as a nonconforming mixed system. Furthermore, the obtained
saddle point problem will be preconditioned by utilizing a preconditioner of the form studied
in Section 4 above, on the lowest order Raviart—-Thomas space, combined with the the
auxiliary space methodcf. Xu [37]). Hence, since we have established above that the
preconditioners studied in Section 4 can be naturally constructed by domain embedding,
this shows, implicitly, that also the Crouzeix—Raviart system can be preconditioned by
domain embedding.

Hence, theideais to reformulate the positive definite Crouzeix—Raviart system as a saddle
point problem, precondition the saddle point problem and then solve the preconditioned
system by an iterative method for saddle point problems. This is in contrast to the more
common approach where saddle point problems are reduced to positive definite problems
in order to apply standard iterative techniques like the conjugate gradient method.

5.1. The non-conforming method as a mixed system

As above, lefJ ,}5e(0,1) be a quasi-uniform family of triangulations ©f Furthermoreg,
is the set of edges ifi;, and for eacht' € €, xg is the midpoint of the edge. Throughout
this section we let

WP = {w:w e P(T) VT € Tj,, wis continuous atg VE € €}

Here the continuity requirement at the boundary should be interpreted suah(thgt= 0
for all boundary edgeg.

We consider approximations of the Dirichlet problem (1.1) with homogeneous boundary
conditions. The discrete solutions are determined by:

Find p, € W such that
> | (agrad py) - (grad gp) dr = (f.q) forallg e Wy (5.1)
TeTy T

For simplicity we will assume throughout this section that the coefficient matiix
piecewise constant with respect to the triangulaignfor all 2 € (0, 1]. (Otherwise, just
replacez by its average on each triangle in the discussion belowyfretenote the space of
discontinuous piecewise constant 2—vectorfields with respect to the triangdatidefine
an operatograd;, : W}? r—>V2 by taking the gradient elementwise, i.&rad,q)|r =
grad(q|r). Then the equation (5.1) can be equivalently written as

(agrad,, py, grad,q) = (f,q) forallg € W?

We also define a discrete divergence operatog dN2|—> WE by duality, i.e.,

(div, v,q) = —(v,grad,q) forallg € W
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A more explicit characterization of the operator ,dizan be derived from the fact that
div(v |7) = O foranyw € Vg. For eachE € ¢, let n be chosen unit normal vector. If
ve Vg then [v - n]g will denote the jump ofv in this direction. Then we have

divy v.q)= Y |E|qxp)[v-n]p forallg e W (5.2)
Ec%éo

whereég ; denotes the set of interior edges a#d is the length ofE.
If pr € W2 is the solution of 5.1 we let the discrete flux € V9 be given by

/afluwvdx:/gradhph-vdx forall veV?
Q Q

The two unknownsi, and p;, can now be determined as the unique solution py) € Vg
X WE of the saddle point problem

(@ tup, v)—(@rad,py, v) = 0, forall veV?,

@viung) = —(f.g), foralgewp. &3

We note that, under the assumption that the coefficient matisxpiecewise constant, the
system (5.3) is exactly equivalent to the original system (5.1).
We observe that the system (5.3) can be given the operator form:

() =(7)

where the coefficient operatatly, : X;, — X, is given by

a1l —grad,
sty = ( dv, 0 )

HereX), = V9 xw}.
If ve Vg we define a mesh dependelit (div)—norm’ by

v llGy, =1l w15+ ldivy v I3
Furthermore, in analogy with the notation above for the standard mixed method, we let
Ap(u, v) = (U, v) + (divy u, div, v)
be the corresponding inner product.
Lemma 5.1. For eachg € W) there is av € V9 such that
div, v=gq and [l vlldiv.n < cllgllo

where the constantis independent of and .
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Proof
We first recall that the functions in € W,? satisfy a discrete Poincaiinequality of the
form

llwllo < cllgrad,wllo (5.4)

wherec is independent ofv andi. A proof of this fact can for example be found in [1] (cf.
Lemma 5.3 of [1]). For a given € W? let¢ € W2 be uniquely determined by

(grad,¢, grad,w) = —(¢, w) forallw € W (5.5)

and letv= grad,¢ evg. By construction diy v= ¢. Furthermore, 5.4 and (5.5) imply
that
Il w115 < llgllol®llo < cllglloll v llo

and hence the desired bound b ||giv., iS established. [ ]

Itis a direct consequence of Lemma 5.1 that a BbuBrezzi condition of the form

. div,, v,
inf_ sup _@dvi v.q) >a>0
geW? yeyo I Vlldiv.rllgllo

holds, wherey is independent of. Therefore, if we let
2 2 2
(v, Pllx, =1l vllgGy., + llallo

and, if the dual norm| (v, q))”XZ on X, is defined byL2—duality, we immediately obtain
that the operator norms

llstallecx,.xr and [lsd; g x,) are bounded uniformly ih  (5.6)

Hence, the properties of the operatfy correspond to similar properties for the coefficient
operator of the standard mixed method studied above (cf. 2.8). By arguing exactly as we
did above we therefore conclude tha#df, : X; — X, is a positive definite operator such
that

[|%B, secxz, xn) and ||%}:1||$(th)(;) are bounded uniformly ih (5.7)

then the condition number of the opera®® <4, is bounded uniformly irk.
Let AD:V9 — VO be defined by

(AU, v) = Ap(u, v) forall u, veV?

This operator id.2~symmetric and positive definite. Furthermore, assume(ﬂfavg —

V9 is a uniform preconditioner foAJ, and thatr;, : W — W2 is spectrally equivalent to
the identity. If®,, : X, — X}, is the block diagonal operator

e o
B = ( 0 I
then this operator satisfies the mapping property (5.7). Hence, the construction of a precon-
ditionerdy, is essentially reduced to the problem of constructing an effective preconditioner
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(92 for AS. Such a preconditioner will be constructed below by the auxiliary space method.
The operatot, is introduced as a replacement for the identity operator, in order to avoid
the inversion of a ‘mass—matrix’.

5.2. The auxiliary space technique

Let the spaceS/,? and W,? be as above, i.e.\/,? is the space of discontinuous piecewise
constantvectors arw,? is the non-conforming Crouzeix—Raviart space. Furthermgyre;
H (div; ) will denote the corresponding lowest order Raviart-Thomas space as described
in Section 4 above, i.e. the parametet 0, andW,, the corresponding space for the mixed
method consists of piecewise constants.

In the auxiliary space method the main tool for constructing a precondit@ﬁefg —
V2 for the operatov\,? is a corresponding precondition@, for the operatorA;, defined
on the auxiliary spac¥},. Here we recall thal,:V,—V}, is defined by

AU, v) = (Apu,v) forall u,veVy,

whereA(-, -) is the H (div)—inner product. The precondition€),:V, — V), is assumed
to be a uniform preconditioner foky, i.e., the bilinear forms

A(v, v) and AOLAL, V)

are equivalent oW, uniformly in 4. Since the operatoi,, andA2 are finite element ap-
proximations of the same differential operator preconditioners for these operators must
be related. This observation is utilized in the construction of the auxiliary space precondi-
tioners. Furthermore, in the present setting it is crucial that the subspaces of divergence free
vector fields inVvy, andvg coincide.

In the rest of this section we assume ttv can be effectively evaluated from a given
inner product representation of i.e. from the datdv, ¢;), where{¢;} is a nodal basis
for V. Let Hh:Vh|—>V2 be theL2—projection. Note that this operator is local, sir\(%is
a space of discontinous functions. Furthermorel'[étvgrevh be theL2-dual operator,
i.e., IT} is the L2—projection ontd/,.

The auxiliary space precondition@?:v%—V? is of the form

0= rh? | + I1,0,I1; (5.8)

wherer is a positive constant independent/ofLet us first remark that this operator is
computationally feasible. This just follows from the assumptior®yntogether with the
fact thatll, is local. In order to use the theory developed in [37] we need to verify that the
projectionIly, is stable and accurate in the sense that

Ap(L,v, I, v) < cA(v, v) forall veV,, (5.9

and
[l —1II) vllo < ch||div v ||o forall veV,, (5.10)

for a suitable constantindependent of. Furthermore, we need to construct an operator
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Pp:V? > V), such that
APyW, Ppw) < cAp(w,w)  forall we V? (5.11)

and
11 = Pp) Wllo < chl|div, wilo  forall we V? (5.12)

where agairr is independent of. The operatoP;, is only needed for the analysis.
In the present setting we defirﬁe:vg — V}, by averaging the normal components on
each edge, i.e.

(Phw-n)Ezg((w~n)E_+(w~n)E+) forall E € €,

This will uniquely determind®,w € V,,.
Lemma 5.2. The operatordI; andP;, defined above satisfy the properties (5.9)—(5.12).

We will delay the verification of these properties. However, the following theorem now
follows more or less directly from [37].

Theorem 5.1. Let ®2:V2 — Vg be defined by (5.8). I, is a uniform preconditioner
for A, then®? is a uniform preconditioner foA?.

Proof
For completeness we outline a proof in the present setting. We need to show that the bilinear
forms

Ap (W, W) and Ay (®2A2W, w)

are uniformly equivalent oldg. We have
AW, w) = ((I = Pp) w+(1 — T, Pow, Adw) + (Ppw, TI; AQw)
The first inner product on the right hand side is estimated by
(10 = Pp) wilo + [1(1 = ) Ppw [[o)]] ASW llo < chAn(w, w?] A2W llo

where we have used the properties (5.10)—(5.12). By the Cauchy—Schwarz inequality, (5.11)
and the assumption d®;, we also have

AP, Pyw)Y2(A I Adw, I Adw) /2
cAp (W, W)Y2 A5, (I, 0, 1T Adw, w)Y/2

(Ppw, HZASW)

IA

A

However these bounds imply that
Ap(W, W) < cAp(@IAw, w)  forall we Vo
From (5.2) it follows that the spectral radiusAlf,’ is O(h=?). Therefore,

An(h® Adw, w) = B2 Adw (13 < cAp(w, w) (5.13)
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This is the first part of the desired lower bound fay,(w, w). In order to complete the
argument note that (5.9) and the Cauchy—Schwarz inequality imply that
An(ALATE) Afw,w) < A (A, T Aw, (I, AT ADw)M2 A, (w, w)*2
AT ADW, AT AQW) Y2 A (w, wyY/2

e An (LA AQw, W) A, (w, w)Y/2

IA

Together with (5.13) and the assumptions@®p this implies the desired lower bound
AR@OAIW, W) < cAu(w,w)  forall we VO

and this completes the proof of the theorem. [ |

5.3. Proof of Lemma 5.2

In order to complete the analysis of the auxiliary space preconditioner (5.8) we have to
establish the properties (5.9)—(5.12) for the operakbrandP;,.
We first note that (5.9) holds with= 1. The follows from the identity

div v, q) = —(v, grad,q) = div,(Ilyv), q)  forall veV,,ge W) (5.14)

To see this identity note that far € V;, (v - n)|g is constant on the edges. This implies
that

/(v. n[glds = |E|(v- n)(xp)lgl(xg) =0  forall veVy, g € WP
E

wherexg is the midpoint of£. This leads directly to (5.14).
Property (5.10) is straightforward. Since thé—projection ontdx/g is local, we have
(letting v = (v1, v2)),

10 = T w0 < ch( Y llgrad vi|[§ ; + |lgrad vz|[§ )*/?

TeT),

However, ifv € V;, then
2 2 1 . 2
llgrad vi|lg 7 + llgrad vz|lg 7 = EIIdIV vllor

Therefore, (5.10) is established.

We next verify (5.12). Le¥ be the discontinuous Raviart-Thomas spaceMighas
the same degrees of freedom\%on each triangle, but the continuity requirements have
been removed. Henc¥,,, VI c V1. If ze V} then the forms

1213 and K2 (@ Wi+ @ i) (5.15)
Ecéy,

are uniformly equivalent with respecthoFrom the definiton of the operatBy, we therefore
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obtain
(= P) W§ < ch? ( > w- n]'i—) < ch?||divy, w[[3

Ecé),
which is (5.12).
Finally, we show that (5.11). It follows directly from (5.15) tHt is uniformly bounded
in L2. In order to bound|div P,w ||o for w € V2 we note that it follows from a standard
inverse inequality that

ldivPaw 2 = > divPaw — w3 1
TeT,
< ch 2 ) IPaw =W < ch ] Paw — w [,
TeT),

Here, we have used the fact thais a constant vector on each triangle. However, together
with (5.12) this implies the desired estimate (5.11).

6. Numerical experiments

In this section we shall report on some numerical experiments using the various precon-
ditioners discussed above. The extended donfinwill always be taken to be the unit
square. The domaif2 is either equal t&2,, i.e. there is no effect of domain embedding, or

Q is equal to the L—shaped domain obtained fi@prby removing the upper right/2 x 1/2

square. The triangulation 61, is constructed by dividing the unit square irtoc 4 sized
squares, and then dividing each square into two triangles by using the negative sloped diag-
onal. In all the examples below;, andV, (€2.) will be the lowest order Raviart—-Thomas
spaces.

6.1. Example

We first consider preconditioners for the operatoy:V, — V. Hence, we consider
approximations of the boundary value problem (3.2)—(3.3). In the experiment we have
takenf = (1, 1)T. We investigate the behavior of the preconditio®gr defined by (4.14),
ie.,

0, =R,0, ,E),

The operato®, ; is a multigrid V—cycle operator with an additive smoother of the form
described in [3], where the scaling factgr,is taken to be 2.

The condition numbers (0, A},) are estimated from the conjugate gradient iterations.
The results are given in Table 1. Of course, the first column of these results just confirms
the theory developed in [3], while the second column seems to agree with the result of
Theorem 4.1, i.e., the condition number®, A ;) appear to be bounded uniformly in

6.2. Example

Inthe next example we consider the mixed method for the problem (1.1), with the coefficient
a equal to the identityf = 1 andg = 0. The discrete system (2.4) is preconditioned by an
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Table 1. Condition numbers for the preconditiorté(tiv)—operator

Domain Unitsquare L-shaped domain
1/h (@, Ap) k(@A)

32 2.40 5.36
64 2.44 5.66
128 2.46 5.90
256 2.46 6.09

Table 2. Condition numbers and the number of iterations for the mixed operator

Unit square L-shaped domain
Domain:
1/h k(RBpsdy) MINRES  «(Bpd,) MINRES

32 2.33 14 5.31 21
64 2.35 14 5.62 21
128 2.34 14 5.86 22
256 2.34 14 6.05 22

operatordB, of the form 3.4, i.e.,

By = <(%h ?) Vi xWh =V, xWy,
Here W, is the space of piecewise constants andAt{div)—preconditione®;, is chosen
exactly as in the previous example above. In Table 2 we present the results of this experi-
ment. In addition to the estimates for the condition numbe@,, «{,), we also report the
number of iterations required by the minimum residual method to reduce the residual of the
preconditioned system by a factor f0n the norm induced by the inner produ{@k;l-, 9.

As expected, the results appear to be bounded, independently of

6.3. Example

Finally, we consider the nonconforming method studied in Section 5, i.e., the system (5.1).
This system is formulated as a saddle point problem, cf. (5.3), and is preconditioned by a
block diagonal operator

0

_ (9, 0Y.y0_wo 0. wo

By, = 0 VL xW) = V) x Wy
n

We recall that\/2 is the space of piecewise constant vectors, wW}jéis the piecewise

linear Crouzeix—Raviart space. Here the preconditidﬂ%rvg — Vg is the auxiliary
space preconditioner given by (5.8), i.e.,

0%= th? 1 + 11,0,IT;
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Table 3. Condition numbers and the number of iterations for the non-conforming operator

Unit square L—shaped domain
Domain:

1/h k(BpAp)  MINRES  «(Byp,)  MINRES
32 2.79 25 5.30 32
64 2.79 24 5.61 34
128 2.79 24 5.86 34

256 2.78 22 5.85 34

In the experiments we have chosen= 0.01 and®;:V, — V, exactly as in the two
previous examples. The operalpon W}? is obtained from the identity operator by replacing
exact integration by the simplest numerical integration rule based on the values at the
midpoint of each edge. In the same way as the above the iterations are terminated when the
proper residual is reduced by a factor of 20The results are given in Table 3. Since the
condition numbers appear to be bounded, independentlytbfs confirms, indirectly, the
conclusion of Theorem 5.1

If the parametet is increased from 01 to Q05 the condition numbers seem to increase
by a factor of at most 3/2, and usually much less. Hence, the performance of the iterative
solvers is not too sensitive with respect to perturbations. iRurthermore, it seems from
the experiments that a suitable chicerafan be made independent of the mesh parameter
h.
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